GUJARAT TECHNOLOGICAL UNIVERSITY

CIVIL ENGINEERING (06) APPLIED FLUID MECHANICS SUBJECT CODE: 2160602 B.E. 6th SEMESTER

Type of course: Applied Physics

Prerequisite: Fluid Mechanics

Rationale: To develop basic understanding for solving field problems related to fluid flow through pipes, open channels, turbo-machines and perform model analysis.

Teaching and Examination Scheme:

Teaching Scheme Cree			Credits	Examination Marks				Total		
L	Т	Р	С	Theory Marks		Practical N		Marks	Marks	
				ESE	PA	A (M)	ES	E (V)	PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Contents

Sr	Contents	Teaching	Weightage
No		hrs	%
1	Module I	12	30
	Flow Through Pipes: Introduction-Continuity equation-Energy equation- Momentum equation-Major and minor energy losses, hydraulic gradient and total energy line-pipes in series and parallel-pipe networks- hydraulic transmission of power. Navier-Stokes equation of motion- Initial conditions and boundary conditions. Viscous flow-Couette flow, Hagen- Poiseuille equation-flow between parallel plates. Turbulent flow in pipes- Prandtl's mixing length theory- velocity distribution- Smooth and rough boundaries-water hammer phenomenon		
2	Module II	4	10
	Boundary Layer : Boundary layer concept-laminar and turbulent boundary layer growth over a flat plate, Von-Karman momentum integral equation- Separation of boundary layer and wake formation.		
3	Module III	11	30
	Open Channel Flow : Basic concept of open channel flow- Steady uniform flow-Velocity distribution-Optimum shape of cross section for uniform flow- Energy equation-specific energy-specific energy diagram- discharge diagram-Application of specific energy and discharge diagrams. Non-Uniform steady flow-equations for gradually varied flow- Direct Step method, Rapidly varied flow- Hydraulic jump- Location of hydraulic jump- flow under sluices-Water surface profiles.		
4	Module IV	9	20
	Turbo Machinery: Water Turbines: Impulse turbine-Reaction turbine-		

	Specific speed-Unit quantities, Performance characteristics for water turbines,Centrifugal pumps: Pumps in series and parallel, Specific speed, Unit quantities, and characteristics curves, Cavitation in turbines and pumps. Introduction to Ventilation System.		
5	Module V	6	10
	Dimensional Analysis and Similitude: Fundamental dimensions-		
	Physical Quantity and Dimensions-Dimensional Homogeneity- Non		
	Dimensional parameters, π -Theorem dimensional analysis, Choice of		
	variables, Determination of Dimensionless parameters. Model		
	Similitude-Physical models- geometric-kinematic and dynamic		
	similarity, Model studies.		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks							
R Level	U Level	A Level	N Level	E Level	C Level		
15	10	15	15	10	5		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Theory and Applications of Fluid Mechanics by K Subramanya, McGraw Hill Publication
- 2. Fluid Mechanics by A.K. Jain, Khanna Publishers, New Delhi
- 3. Hydraulics and Fluid Mechanics by P.N. Modi and S.M. Seth, Standard Book House, New Delhi
- 4. Fluid Mechanics by Victor L. Streeter, E. B. Wylie by, McGraw Hill Publication
- 5. Fluid Mechanics by Frank M White, McGraw Hill Publication

Course Outcomes:

After successful completion of the course the students shall be able to:

- 1. Analyze fluid flow through pipes in series, parallel and pipe networks under laminar and turbulent flow conditions
- 2. Analyze and design streamlined objects considering boundary layer effects.
- 3. Analyze open channel flow and design optimal sections; calculate forces on sluice gates considering specific energy and momentum principle.
- 4. Understand, analyze and study the performance characteristics of hydraulic machines
- 5. Carry out model studies for fluid flow problems

List of Experiments:

Students will have to perform following experiments in laboratory and prepare the laboratory manual. The students will have to solve five problems covering all modules.

- 1. Viscous flow through parallel plates
- 2. Pipe friction
- 3. Pressure distribution around objects
- 4. Uniform flow in Open Channel
- 5. Application of specific energy and momentum principle (Hydraulic jump)
- 6. Performance characteristics of Centrifugal pump
- 7. Performance Characteristics of Water Turbines
- 8. Similitude and Model Studies
- 9. Development of Computer programs for fluid flow in pipes, open channel, hydraulic machines and dimensional analysis.

Design based/open ended problem on:

- 1. Pipes in series and parallel
- 2. Pipe network analysis
- 3. Design of optimal open channel sections for uniform flow
- 4. Specific energy and hydraulic jump, forces on Sluice gates
- 5. Design of Pelton turbine, Francis turbine, Kaplan turbine, pumps in series and parallel
- 6. Model studies related to pipe flow, open channel flow, hydraulic machines etc.
- 7. Any other relevant problem suggested by faculty members.

Major Equipments:

- 1. Pipe friction apparatus
- 2. Wind tunnel
- 3. Open channel with necessary attachments for Uniform flow and Hydraulic Jump experiment
- 4. Test rig for Centrifugal pump
- 5. Test rig for Pelton turbine
- 6. Test rig for Francis turbine and
- 7. Test rig for Kaplan turbine

List of Open Source Software/learning website: www.nptel.ac.in

Active Learning Assignments (ALA):

Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work - The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the website of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.