

# GUJARAT TECHNOLOGICAL UNIVERSITY Bachelor of Engineering

# Subject Code: 3130905 Semester – III Subject Name: Control System Theory

# Type of course:

# **Prerequisite:**

**Rationale:** Automatic control of industrial processes is essential for increasing the output and in turn the profit of an industry. As a result, most of the companies are using automatic control of the machineries and processes. As an engineer, a student must know the basics of automatic control system. This subject is intended to supplement the basic skill of an engineer.

# **Teaching and Examination Scheme:**

| Teaching Scheme |   |   | Credits | Examination Marks |        |                 |        | Total |
|-----------------|---|---|---------|-------------------|--------|-----------------|--------|-------|
| L               | Т | Р | С       | Theory Marks      |        | Practical Marks |        | Marks |
|                 |   |   |         | ESE (E)           | PA (M) | ESE (V)         | PA (I) |       |
| 3               | 0 | 2 | 4       | 70                | 30     | 30              | 20     | 150   |

# **Content:**

| Sr. No. | Content                                                                        | Total | % Weightage |
|---------|--------------------------------------------------------------------------------|-------|-------------|
|         |                                                                                | Hrs   |             |
| 1       | Introduction to control problem                                                | 05    | 15          |
|         | Industrial Control examples. Mathematical models of physical systems.          |       |             |
|         | Control hardware and their models. Transfer function models of linear          |       |             |
|         | time-invariant systems.                                                        |       |             |
|         | Feedback Control: Open-Loop and Closed-loop systems. Benefits of               |       |             |
|         | Feedback. Block diagram algebra.                                               |       |             |
| 2       | Time Response Analysis                                                         | 12    | 25          |
|         | Standard test signals. Time response of first and second order systems for     |       |             |
|         | standard test inputs. Application of initial and final value theorem.          |       |             |
|         | Design specifications for second-order systems based on the time-              |       |             |
|         | response.                                                                      |       |             |
|         | Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis.     |       |             |
|         | Root-Locus technique. Construction of Root-loci.                               |       |             |
| 3       | Frequency-response analysis                                                    | 08    | 20          |
|         | Relationship between time and frequency response, Polar plots, Bode            |       |             |
|         | plots. Nyquist stability criterion. Relative stability using Nyquist criterion |       |             |
|         | – gain and phase margin. Closed-loop frequency response.                       |       |             |
| 4       | Introduction to Controller Design                                              | 12    | 25          |
|         | Stability, steady-state accuracy, transient accuracy, disturbance rejection,   |       |             |
|         | insensitivity and robustness of control systems.                               |       |             |
|         | Root-loci method of feedback controller design.                                |       |             |
|         | Design specifications in frequency-domain. Frequency-domain methods            |       |             |
|         | of design. Application of Proportional, Integral and Derivative                |       |             |
|         | Controllers, Lead and Lag compensation in designs.                             |       |             |
|         | Analog and Digital implementation of controllers.                              |       |             |
| 5       | State variable Analysis                                                        | 06    | 15          |
|         | Concepts of state variables. State space model. Diagonalization of State       |       |             |



# **GUJARAT TECHNOLOGICAL UNIVERSITY**

#### Bachelor of Engineering Subject Code: 3130905

| Subject Code. 5150705                                                     |  |
|---------------------------------------------------------------------------|--|
| Matrix. Solution of state equations. Eigen values and Stability Analysis. |  |
| Concept of controllability and observability.                             |  |
| Pole-placement by state feedback. Discrete-time systems. Difference       |  |
| Equations. State-space models of linear discrete-time                     |  |
| systems. Stability of linear discrete-time systems.                       |  |

# Suggested Specification table with Marks (Theory):

| Distribution of Theory Marks |         |         |         |         |         |
|------------------------------|---------|---------|---------|---------|---------|
| R Level                      | U Level | A Level | N Level | E Level | C Level |
| 20                           | 30      | 20      | 20      | 10      | -       |

# Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

# **Reference Books:**

- M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.
- K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009

# **Course Outcomes:**

| Sr.<br>No. | CO statement                                                                                                           | Marks %<br>weightage |
|------------|------------------------------------------------------------------------------------------------------------------------|----------------------|
| CO-1       | Understand the fundamental of feedback control system.                                                                 | 15                   |
| CO-2       | Understand time response specifications and determine the (absolute) stability of a closed-loop control system         | 25                   |
| CO-3       | Determine the time and frequency-domain responses of first and second-order systems to step and other standard inputs. | 25                   |
| CO-4       | Design controller as per given specifications using different techniques                                               | 20                   |
| CO-5       | Express and solve system equations in state-variable form (state variable models).                                     | 15                   |

# List of Open Source Software/learning website:

• E-materials available at the website of NPTEL- http://nptel.ac.in/